Conditional spatial fuzzy C-means clustering algorithm for segmentation of MRI images
نویسندگان
چکیده
The fuzzy C-means (FCM) algorithm has got significant importance due to its unsupervised form of learning and more tolerant to variations and noise as compared to other methods in medical image segmentation. In this paper, we propose a conditional spatial fuzzy C-means (csFCM) clustering algorithm to improve the robustness of the conventional FCM algorithm. This is achieved through the incorporation of conditioning effects imposed by an auxiliary (conditional) variable corresponding to each pixel, which describes a level of involvement of the pixel in the constructed clusters, and spatial information into the membership functions. The problem of sensitivity to noise and intensity inhomogeneity in magnetic resonance imaging (MRI) data is effectively reduced by incorporating local and global spatial information into a weighted membership function. The experimental results on four volumes of simulated and one volume of real-patient MRI brain images, each one having 51 images, show that the csFCM algorithm has superior performance in terms of qualitative and quantitative studies such as, cluster validity functions, segmentation accuracy, tissue segmentation accuracy and receiver operating characteristic (ROC) curve on the image segmentation results than the k-means, FCM and some other recently proposed FCM-based algorithms. © 2015 Elsevier B.V. All rights reserved.
منابع مشابه
High Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کاملHigh Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کاملA Novel Fuzzy-C Means Image Segmentation Model for MRI Brain Tumor Diagnosis
Accurate segmentation of brain tumor plays a key role in the diagnosis of brain tumor. Preset and precise diagnosis of Magnetic Resonance Imaging (MRI) brain tumor is enormously significant for medical analysis. During the last years many methods have been proposed. In this research, a novel fuzzy approach has been proposed to classify a given MRI brain image as normal or cancer label and the i...
متن کاملAutomatic Prostate Cancer Segmentation Using Kinetic Analysis in Dynamic Contrast-Enhanced MRI
Background: Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) provides functional information on the microcirculation in tissues by analyzing the enhancement kinetics which can be used as biomarkers for prostate lesions detection and characterization.Objective: The purpose of this study is to investigate spatiotemporal patterns of tumors by extracting semi-quantitative as well as w...
متن کاملUnsupervised MRI segmentation with spatial connectivity
Magnetic Resonance Imaging (MRI) offers a wealth of information for medical examination. Fast, accurate and reproducible segmentation of MRI is desirable in many applications. We have developed a new unsupervised MRI segmentation method based on k-means and fuzzy c-means (FCM) algorithms, which uses spatial constraints. Spatial constraints are included by the use of a Markov Random Field model....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Appl. Soft Comput.
دوره 34 شماره
صفحات -
تاریخ انتشار 2015